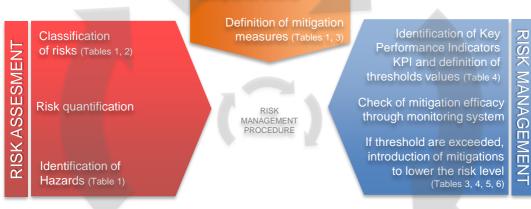

Brenner Base Tunnel, Italian Side, Lot Mules 2-3: risk management procedures

A. Voza & R. Zurlo BBT SE, Bolzano, Italy

S. Bellini & E.M. Pizzarotti *Pro Iter, Milan, Italy*

ABSTRACT: The Brenner Base Tunnel is mainly composed of two single-track Railway Tunnels and an Exploratory Tunnel; Lot Mules 2-3 concerns a 22 km long stretch on the Italian side. It crosses the South part of mountainous dorsal between Austria and Italy, under overburdens up to 1850 m, consisting of rocks both of the Southalpine and Australpine domains, separated by the major Periadriatic Fault. The tunnels have to be carried out both with Mining and Mechanized (TBM) Methods, with average dimension ranging from 7 m (Exploratory Tunnel) to 20 m (Logistics Caverns). The forecasted rock mass behavior varies from rock burst to squeezing phenomenon. The paper illustrates the risk management procedures planned at the design stage and the first experiences of their application: monitoring, surveys, and tests during the advancement, guidelines for the application of excavation sections, design and operational risk identification, assessment & analysis, ownership, mitigation & control phases.


BBT Lot Mules 2-3: risk management procedures

A. Voza, R. Zurlo – S. Bellini, E.M. Pizzarotti BBT SE, Bolzano, Italy – Pro Iter, Milan, Italy

RISK ANALYSIS

Definition of risk acceptance criteria

TABLE 3

	MITIGATION MEASURES				
1	TBM: DRAINAGES + GROUTED FIBERGLASS BARS				
2	TBM: DRAINAGES + MPSP CEMENT MIX INJECTION FROM FIBERGLASS BARS				
3	TBM: BY-PASS TO REACH THE DAMAGED AREA + MPSP CEMENT MIX INJECTION FROM FIBERGLASS BARS				
4	TBM: RADIAL RESIN INJECTIONS				
5	(HYDRO)GEOLOGICAL / GEOMECH. INVESTIGATION				
6	MOVING TO AN HEAVIER TYPICAL SECTION / INCREASING OF SUPPORT				
7	INCREASING OF DRAINAGE				
8	STRENGTHENING OF VENTILATION SYSTEM				
9	REDUCTION OF WATER USE				
10	MOVING TO Rb TYPICAL SECTION				
11	REINFORCEMENT OF ROCK MASS BETWEEN CAVITIES				
12	APPROPRIATE CONNECTION BETWEEN STRUCTURES				
13	ADOPTION OF SPECIFIC PROTECTION FOR STAFF MEMBERS; REDUCTION OF EXPOSITION TIME				
14	APPLICATION OF SOIL CONDITIONING AGENTS; REDUCTION OF WATER USE				
15	STRENGTHENING OF COOLING SYSTEM				

TABLE 5		
KPI	CONSEQUENT ACTIONS	MITIGATION MEASURES (MINING METHODS)
ALL UNDER ATTENTION THRESHOLD	ONLY SYSTEMATIC MONITORING	NONE
AT LEAST ONE OVER ATTENTION THRESHOLD	SYSTEMATIC AND NON-SYSTEMATIC MONITORING	PREPARATION TO 6
AT LEAST ONE OVER ALARM THRESHOLD	SYSTEMATIC AND NON-SYSTEMATIC MONITORING	6
TABLE 6		

KPI	CONSEQUENT ACTIONS	MITIGATION MEASURES (TBM)
ALL UNDER ATTENTION THRESHOLD	ONLY SYSTEMATIC MONITORING	NONE
AT LEAST ONE OVER ATTENTION THRESHOLD	SYSTEMATIC AND NON-SYSTEMATIC MONITORING	NONE
AT LEAST ONE OVER ALARM THRESHOLD	SYSTEMATIC AND NON-SYSTEMATIC MONITORING	1, 2, 3, 5 OR DEFINITION OF OTHER MITIGATION MEASURES

	٢A	В	L	Е	4	
--	----	---	---	---	---	--

KPI	ATTENTION THRESHOLD	ALARM THRESHOLD	
SURVEYS, TBM SPOIL ANALYSIS	SMALL AMOUNT OF ATYPICAL MATERIAL WITH RESPECT TO GEOLOGICAL MODEL	GREAT AMOUNT OF ATYPICAL MATERIAL WITH RESPECT TO GEOLOGICAL MODEL	
GEOMECH. CLASSIFICATION OF FRONT	TRACES OF ASYMMETRY, ANISOTROPY, DISHOMOGENEITY, RMR NEAR ATTENTION THRESHOLD	CLEAR ASYMMETRY, ANISOTROPY, DISHOMOGENEITY, RMR NEAR ALARM THRESHOLD	
WATER FLOW RATE / PROPERTIES	NOT IN PRESSURE WATER INFLOW, TEMPERATURE COHERENT WITH PREVIOUS RESULTS	IN PRESSURE WATER INFLOW, TEMPERATURE NOT COHERENT WITH PREVIOUS RESULTS	
CONVERGENCE / EXTRUSION	1 % OF EXCAVATION RADIUS	2 % OF EXCAVATION RADIUS	
TBM PARAMETERS	SIGN OF ANOMALIES, LIGHT REDUCTION OF SPECIFIC ENERGY	CLEAR ANOMALIES, DRASTIC REDUCTION OF SPECIFIC ENERGY	
STRESS IN LININGS	77 % OF MATERIAL DESIGN STRENGTH	100 % OF MATERIAL DESIGN STRENGTH	
ACOUSTIC EMISSIONS	NOT RELATED TO INCIPIENT FRACTURE PHENOMENA	RELATED TO INCIPIENT FRACTURE PHENOMENA	

TABLE 1

HAZARD	RISK CAT.	MITIGATION MEASURES
FACE INSTABILITY	А	1, 2, 3, 6
SQUEEZING	A, B	1, 2, 3, 5, 6
ASYMM. STRESSES AND STRAINS	в	1, 2, 3, 5, 6
CAVE IN	A, C	1, 2, 3, 5, 6
SPALLING / CRUMBLING	В	1, 2, 3, 5, 6
FAULTS	A, B	1, 2, 3, 5, 6, 7
WATER INFLOW / PRESSURE	А	1, 2, 3, 7
DISSOLUTION / TRANSPORT	В	1, 2, 3, 7
GAS	A	8
MIXED FACE LITHOLOGY	В	1, 2, 3, 6
SWELLING	А, В	1, 2, 3, 9, 6
ROCK BLOCKS INSTABILITY	A, B	1, 2, 3, 6
ROCK BURST	A	1, 2, 3, 10
INTERF. WITH OTHER CAVITIES	В	11
INSTAB. IN MULTI STAGE EXCAV.	A	12
RADIOACTIVE MINERALS	A	13
CLOGGING	A	14
HIGH TEMPERATURES	A	15
IMPACT ON WATER RESOURCES	C	2, 4

RISK CATEGORIES
BLOCK OF REGULAR EXCAVATION PROCESS
COLLAPSE OR SIGNIFICANT DAMAGE TO LINING
IMPACTS ON ENVIRONMENT OR OTHER STRUCTURE